Additional material

A joint deep semi-non-negative matrix factorization method for learning integrative representation of molecular signals for Alzheimer's disease

Sehwan Moon¹ and Hyunju Lee^{1,2,*}

¹School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea.

²Artifical Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, South Korea.

* hyunjulee@gist.ac.kr

	Layer to use for classification	Reduced dimensions of 1st layer	Reduced dimensions of 2nd layer	Reduced dimensions of 3rd layer	Reduced dimensions of 4th layer	λ(L2 Norm)	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean
1	3rd layer	60	59	44		0.01	0.8823	0.7912	0.8196	0.7826	0.8795	0.8310
2	2nd layer	60	47			0.0001	0.8955	0.7923	0.8056	0.7982	0.8605	0.8304
3	2nd layer	60	59			0.0001	0.8953	0.7805	0.8143	0.7973	0.8601	0.8295
4	2nd layer	60	35			0.001	0.8894	0.7820	0.8307	0.7924	0.8390	0.8267
5	2nd layer	60	59			0.001	0.8967	0.7791	0.8133	0.7841	0.8598	0.8266
6	2nd layer	60	35			0.0001	0.8918	0.7783	0.8273	0.7956	0.8355	0.8257
7	2nd layer	40	39			0.0001	0.8879	0.7702	0.8051	0.7928	0.8723	0.8257
8	2nd layer	79	78	19		0.01	0.8839	0.7402	0.8441	0.7720	0.8808	0.8242
9	3rd layer	40	39	38		0.001	0.8690	0.7883	0.8017	0.8082	0.8534	0.8241
10	2nd layer	79	47			0.01	0.8924	0.7653	0.8060	0.7983	0.8566	0.8237
11	2nd layer	40	39			0.001	0.8851	0.7671	0.8036	0.7926	0.8632	0.8223
12	3rd layer	79	39	38		0.0001	0.8733	0.7696	0.7912	0.7963	0.8775	0.8216
13	3rd layer	60	44	43		0.01	0.8812	0.7702	0.8101	0.7731	0.8711	0.8211
14	3rd layer	79	78	58		0.001	0.8791	0.7772	0.8248	0.7825	0.8416	0.8210
15	2nd layer	60	35			0.01	0.8848	0.7754	0.8111	0.7886	0.8444	0.8209
16	3rd layer	79	78	77		0.01	0.8740	0.7878	0.8170	0.7623	0.8632	0.8209
17	2nd layer	60	44	43		0.01	0.8731	0.7599	0.8293	0.7660	0.8758	0.8208
18	2nd layer	60	59			0.01	0.8835	0.7788	0.8010	0.7686	0.8715	0.8207
19	2nd layer	40	39	38		0.001	0.8577	0.7717	0.8046	0.8014	0.8679	0.8207
20	2nd layer	79	62			0.01	0.8813	0.7858	0.7857	0.7904	0.8602	0.8207
21	2nd layer	60	47			0.001	0.8939	0.7837	0.8094	0.7918	0.8221	0.8202
22	3rd layer	79	39	38		0.01	0.8786	0.7611	0.8051	0.7794	0.8767	0.8202
23	2nd layer	60	47			0.01	0.8726	0.7851	0.7943	0.7801	0.8679	0.8200
24	2nd layer	60	59	44		0.0001	0.8912	0.7568	0.8030	0.7713	0.8739	0.8192
25	3rd layer	40	39	38		0.01	0.8591	0.7935	0.8000	0.7765	0.8639	0.8186
26	2nd layer	79	47			0.0001	0.8760	0.7765	0.7869	0.7951	0.8572	0.8184
27	2nd layer	79	78	77		0.01	0.8839	0.7754	0.7904	0.7761	0.8636	0.8179
28	1st layer	79	78	19		0.01	0.8776	0.7678	0.8171	0.7790	0.8480	0.8179
29	3rd layer	79	58	57		0.01	0.8733	0.7728	0.8120	0.7750	0.8550	0.8176
30	2nd layer	79	58	57		0.001	0.8787	0.7581	0.8144	0.7799	0.8565	0.8175
31	3rd layer	79	78	77	76	0.01	0.8774	0.7673	0.7968	0.7775	0.8684	0.8175
32	3rd layer	60	59	44		0.0001	0.8613	0.7997	0.7725	0.7957	0.8581	0.8175
33	3rd layer	60	59	44		0.001	0.8722	0.7727	0.8035	0.7585	0.8774	0.8168
34	3rd layer	60	59	58		0.01	0.8780	0.7487	0.8122	0.7876	0.8562	0.8165
35	2nd layer	60	59	29		0.01	0.8758	0.7659	0.7832	0.8212	0.8365	0.8165
36	2nd layer	79	62			0.001	0.8730	0.7894	0.7759	0.7922	0.8463	0.8153
37	2nd layer	40	39	38		0.0001	0.8739	0.7851	0.7899	0.7949	0.8326	0.8153
38	3rd layer	79	78	77		0.001	0.8688	0.7680	0.8259	0.7626	0.8498	0.8150
39	2nd layer	79	78			0.01	0.8919	0.7710	0.7855	0.7799	0.8465	0.8150
40	2nd layer	60	59	44		0.01	0.8818	0.7655	0.7943	0.7705	0.8602	0.8145

Top AUC scores of validation sets with various hyper-parameters in Addneuromed cohort.

.

Identification for AD-related module using best performing two-layer model in the ANM validation set. The LIME model was used to score the importance of modules when DNN, SVM, and RF were used as classifiers. Using the Scikit-learn, important modules were scored when RF was used as a classifier. To validate the relationship between AD-related modules and AD, we constructed modules by including genes according to various z-score thresholds and performed enrichment analysis. Green elements indicate modules including the significantly enriched AD KEGG pathway

Identification of AD-related modules using the best performing three-layer model in the ANM validation set. The LIME model was used to score the importance of modules when DNN, SVM, and RF were used as classifiers. Using the Scikit-learn, important modules were scored when RF was used as a classifier. To validate the relationship between AD-related modules and AD, we constructed modules by including genes according to various z-score thresholds and performed enrichment analysis. Green elements indicate modules including the significantly enriched AD KEGG pathway

Top 10 of positive genes and negative genes in the AD-related module (module 7 of the best performing model in the ANM validation set).

Identification for AD-related modules using the best performing four-layer model in the ANM validation set. The LIME model was used to score the importance of modules when DNN, SVM, and RF were used as classifiers. Using the Scikit-learn, important modules were scored when RF was used as a classifier. To validate the relationship between AD-related modules and AD, we constructed modules by including genes according to various z-score thresholds and performed enrichment analysis. Green elements indicate modules including the significantly enriched AD KEGG pathway.

Identification of modules for the relation to age. The linear regression was used to identify statistically significant modules related to age. Green elements indicate modules with p-value < 0.05.

Term	Overlap	P.value	Adjusted.P.
neutrophil mediated immunity (GO:0002446)	35/487	1.48E-17	2.51E-14
neutrophil activation involved in immune response (GO:0002283)	35/483	1.14E-17	2.91E-14
neutrophil degranulation (GO:0043312)	35/479	8.79E-18	4.49E-14
secretory granule lumen (GO:0034774)	28/317	1.68E-16	7.50E-14
specific granule (GO:0042581)	16/160	9.82E-11	2.19E-08
specific granule lumen (GO:0035580)	11/62	1.75E-10	2.60E-08
cytoplasmic vesicle lumen (GO:0060205)	13/129	5.31E-09	5.92E-07
Type I diabetes mellitus	8/43	3.86E-08	2.97E-06
Graft-versus-host disease	8/41	2.60E-08	4.00E-06
MHC protein complex (GO:0042611)	6/18	4.62E-08	4.12E-06
Allograft rejection	8/38	1.37E-08	4.22E-06
Autoimmune thyroid disease	8/53	2.13E-07	1.31E-05
Hematopoietic cell lineage	10/97	2.59E-07	1.33E-05
MHC class II protein complex (GO:0042613)	5/14	4.37E-07	3.25E-05
defense response to bacterium (GO:0042742)	16/241	3.81E-08	3.79E-05
defense response to fungus (GO:0050832)	6/17	3.11E-08	3.96E-05
Toxoplasmosis	10/113	1.08E-06	4.16E-05
Epstein-Barr virus infection	13/201	9.95E-07	4.38E-05
tertiary granule (GO:0070820)	12/164	7.10E-07	4.52E-05
Staphylococcus aureus infection	8/68	1.52E-06	4.68E-05
Leishmaniasis	8/74	2.92E-06	8.16E-05
Viral myocarditis	7/59	6.59E-06	0.00016902
Inflammatory bowel disease (IBD)	7/65	4.08E-00	0.00022745
Phagosome	10/152	1.55E-05	0.00034184
Systemic lupus erythematosus	9/133	3.32E-05	0.00068249
azurophil granule (GO:0042582)	10/154	1.74E-05	0.00086287
defense response to Gram-positive bacterium (GO:0050830)	8/65	1.07E-06	0.00091102
integral component of lumenal side of endoplasmic reticulum membrane (GO:0071556)	5/29	2.24E-05	0.00099903
vacuolar lumen (GO:0005775)	10/161	2.56E-05	0.00103726
I UDEICUIOSIS	10/179 8/71	6.30E-05	0.00121301
interferon-gamma-mediated signaling pathway (GO:0060333)	8/70	2.12E-00 1.90E-06	0.00133382
endocytic vesicle lumen (GO:0071682)	4/18	5.42E-05	0.0020149
Th1 and Th2 cell differentiation	7/92	0.00012094	0.00219117
ficolin-1-rich granule (GO:0101002)	10/184	7.93E-05	0.0027223
azurophil granule lumen (GO:0035578)	7/90	0.00010526	0.00335315
ficolin-1-rich granule lumen (GO:1904813)	8/123	0.00012039	0.00357952
B cell receptor signaling pathway	6/71	0.00020944	0.00358368
Th17 cell differentiation	4/10 7/107	4.012-00	0.00401000
Human T-cell leukemia virus 1 infection	10/219	0.00032757	0.00504456
Cell adhesion molecules (CAMs)	8/145	0.00037161	0.00520247
primary lysosome (GO:0005766)	3/10	0.00019241	0.00536345
PI3K-Akt signaling pathway	13/354	0.0003699	0.00542515
Kaposi sarcoma-associated herpesvirus infection	9/186	0.0004261	0.00570608
Legionellosis	5/55	0.00050923	0.00627373
Asthma Bethways in concer	4/31	0.00049323	0.00632973
Rheumatoid arthritis	6/91	0.00070495	0.00835098
IL-17 signaling pathway	6/93	0.00089572	0.00985288
Primary immunodeficiency	4/37	0.00097861	0.01039352
Human immunodeficiency virus 1 infection	9/212	0.00108471	0.01077707
Amoebiasis	6/96	0.00105745	0.01085651
Acute myeloid leukemia	5/66	0.00117579	0.01131699
ER to Golgi transport vesicle membrane (GO:0012507)	5/54 6/40	2.555.05	0.01226391
I ondevity regulating pathway	6/102	0.00144734	31
Adipocytokine signaling pathway	5/69	0.00143627	0.01340515
positive regulation of NF-kappaB transcription factor activity (GO:0051092)	9/128	2.45E-05	0.01390407
Human cytomegalovirus infection	9/225	0.00163802	0.01441453
Transcriptional misregulation in cancer	8/186	0.00187413	0.01603421
Chemokine signaling pathway	8/190	0.00214035	0.01781693
C3HC4-type RING tinger domain binding (GO:0055131)	3/6	3.32E-05	0.01912441
Intestinal immune network for InA production	4/48	0.00061696	0.02029239
Viral carcinogenesis	8/201	0.00302775	0.02391144
Protein processing in endoplasmic reticulum	7/165	0.00384253	0.02958748
Osteoclast differentiation	6/127	0.00434125	0.03261229
Glutathione metabolism	4/56	0.00455763	0.03342263
Natural killer cell mediated cytotoxicity	6/131	0.00504593	0.03614295
cellular response to interferon-gamma (GO:0071346)	8/116	7.98E-05	0.03701505
tenary granule memorane (GO.0070821)	5/13 12/100	0.00184672	0.04118189
COPII-coated ER to Golgi transport vesicle (GO:0030134)	5/75	0.00208139	0.04420466
	0/400	0.00647607	0.0452225

Significantly enriched gene ontology terms and KEGG pathways of genes in the module 1